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Figure 1: A tulip vase example. Using our 3D painting system, artists can draw digital impasto style paintings like this one. The fine details
resulted from bristle-level interactions cannot be easily produced by previous systems. Copyright c© Zhili Chen, Byungmoon Kim, Daichi Ito, and Huamin Wang 2015.

Abstract

We present a real-time painting system that simulates the interac-
tions among brush, paint, and canvas at the bristle level. The key
challenge is how to model and simulate sub-pixel paint details,
given the limited computational resource in each time step. To
achieve this goal, we propose to define paint liquid in a hybrid
fashion: the liquid close to the brush is modeled by particles,
and the liquid away from the brush is modeled by a density field.
Based on this representation, we develop a variety of techniques to
ensure the performance and robustness of our simulator under large
time steps, including brush and particle simulations in non-inertial
frames, a fixed-point method for accelerating Jacobi iterations, and
a new Eulerian-Lagrangian approach for simulating detailed liquid
effects. The resulting system can realistically simulate not only
the motions of brush bristles and paint liquid, but also the liquid
transfer processes among different representations. We implement
the whole system on GPU by CUDA. Our experiment shows
that artists can use the system to draw realistic and vivid digital
paintings, by applying the painting techniques that they are familiar
with but not offered by many existing systems.
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1 Introduction

Painting with brushes has a long history that can be traced back to
prehistoric days, when people used wood or bone sticks that later
were evolved into bristles. Today, and in the future, painting with
brushes is still, and will be, popular for hobby, kids’ education,
and professional arts and designs. For centuries, artists discovered,
invented, and developed their art tools and materials to make the
paintings detailed and impressive. In recent years, many artists
expressed their interests in using computers to paint, because of
its convenience and flexibility such as undo/redo, saving, upload-
ing, and sharing. We believe that a high-quality computer-based
painting system will be greatly appreciated by a large audience,
including hobbyists, kids, and artists. In the future, if the fidelity
of computer-based painting becomes so high that it is visually
indistinguishable from real painting, we expect that the art of
painting will be revolutionized for all humanity eventually.

Since artists are trained to become familiar with painting materials
and techniques, which have proven to be effective for rich results
through centuries, they expect that a computational system will
provide the same experience as traditional painting in the real
world. However, due to the limitation of the computer power
and the complexity of the phenomena involved in real painting,
computational painting remains as a difficult problem in computer
graphics. The existing painting systems are one of the three types:
procedural [Strassmann 1986; DiVerdi et al. 2013], example-based
[Lu et al. 2013], or simulation-based [Baxter et al. 2001; Baxter
et al. 2004b; Chu et al. 2010]. Procedural methods are fast and
their results are clean, but they have limited complexity and they are
unable to generate undefined effects. Example-based methods can
produce highly detailed results, but they suffer from repetitiveness
and discontinuity issues. They also have difficulty in mixing colors
properly. In contrast, simulation-based methods can be highly
realistic, depending on the physics models they are built upon.
While researchers have extensively studied the simulation of paint-
canvas interactions, little research effort was spent on modeling and
simulating individual bristles and their interactions with 3D paint.
As a result, existing systems either model a brush by a deformable
model without individual bristles [Chu and Tai 2002; Baxter et al.
2004b; Chu et al. 2010], or model a bristle brush but ignore the
simulation of 3D paint completely [DiVerdi et al. 2010].



Figure 2: Details in real painting. This photograph demonstrates
the rich painting details generated from bristle-paint interactions.

A painting brush is made of bristles arranged in vastly different
shapes, such as fan, flat, round, mop, rigger, angular, and filbert.
During the painting process, each bristle strand interacts with other
strands, paint, and canvas. Such interactions are complex, resulting
in always unique bristle passage tails. For example, bristles can
be pushed heavily against canvas to spread out a large area, as
shown in Figure 3a. Meanwhile, the bristle tips can be used to
paint thin strokes, edit details, move a small amount of paint, or
mix colors on canvas. The bristle shape change caused by a variety
of factors, such as wetness, paint material, and external force, can
lead to many interesting bristle behaviors. These behaviors are
easily understandable by people at different skill levels, and widely
used to achieve rich painting effects, such as Figure 2 shows. To
reproduce the painting process by computers, we cannot ignore the
modeling and simulation of individual bristles.

In this paper, we study the development of the world’s first real-
time simulation-based 3D painting system with bristle-level inter-
actions. The key challenge is how we can achieve both efficiency
and realism in such detailed simulation, with limited computational
power? We especially favor the Eulerian-Lagrangian approach,
which has demonstrated its capability of handling both large and
small liquid features in a number of simulation techniques [Losasso
et al. 2008; Lee et al. 2009; Chentanez et al. 2014]. While
researchers designed these previous techniques for the simulation of
large water bodies and their thin features, we would like to consider
the unique characteristics of painting simulation in this work.

• Paint motion is largely determined by brush motion. Artists
use the brush to carry paint to different locations fast.

• Most paint liquids are highly viscous. They can hardly move,
once the brush travels away from them.

Based on these two characteristics, we present our real-time paint-
ing system implemented completely on GPU. During the develop-
ment of this system, we overcame the following challenges and
made the corresponding technical contributions.

• Large time step. The limited computational resource
requires us to use a large time step in simulation. When the
forces are stiff, it can easily cause numerical instability under
explicit time integration. To solve this issue, we formulate
brush and fluid simulations in non-inertial local frames. This
allows us to robustly handle the adhesion effect of paint liquid
to brush bristles, when using a large time step.

• Inaccuracy. To prevent the liquid volume from being
changed over time, fluid incompressibility can be enforced
in many ways, most of which require an iterative solve. A
real-time system cannot afford using many iterations or a
sophisticated solver. Fortunately, we found that a fixed-point

(a) Stabbing. Stabbing the brush into
canvas and rolling it by fingers can
create interesting textures. This tech-
nique usually works in conjunction
with other brush strokes.

(b) Scumbling. Scumbling is the
practice of applying light layers of
paint on top of drier, darker layers. It
can be used to draw clouds or other
mottled effects.

Figure 3: Painting details generated by our GPU-based 3D paint-
ing simulation system at the bristle level.

method can effectively improve the convergence of Jacobi
iterations within a small number of iterations.

• Liquid transfer. Our system allows paint liquid to travel
freely among different representations. To achieve this effect,
we develop two liquid transfer processes in our system:
bristle-particle liquid transfer and grid-particle liquid transfer.
These two processes help the system conveniently use dif-
ferent liquid representations, to produce rich sub-pixel liquid
details with a small computational cost.

Our experiment shows that the system can run at 30 to 110FPS
on an Nvidia GeForce GTX TITAN X GPU. Artists can use the
system to draw realistic and vivid digital paintings as Figure 1
shows, by applying the painting techniques that they are familiar
with, such as stabbing and scumbling shown in Figure 3. Many
of these techniques and their effects cannot be easily produced by
previous painting simulation systems.

2 Related Work

Physically based fluid simulation. Existing fluid simulation
methods can be categorized into Eulerian methods, Lagrangian
methods, and hybrid methods that combine both. Here we are in-
terested in the simulation techniques that can track the free surface
of a liquid. In Eulerian methods, liquid is typically represented
by 2.5D height fields [O’Brien and Hodgins 1995; Wang et al.
2007], or 3D volumetric grids [Osher and Sethian 1988; Foster
and Fedkiw 2001]. Among Lagrangian methods, the most popular
ones are formulated by solving smoothed particle hydrodynamics
(SPH) [Gingold and Monaghan 1977; Müller et al. 2003] and its
variations, such as PCISPH [Solenthaler and Pajarola 2009] and
WCSPH [Becker and Teschner 2007]. Based on SPH, Macklin and
Müller [2013] developed a position-based liquid simulator for bet-
ter numerical stability. Recently, Zhu and colleagues [2014; 2015]
proposed a Lagrangian method to simulate both Newtonian and
non-Newtonian liquids using simplicial complexes. Their system
generated realistic and detailed painting effects, after spending a
sufficiently large computational cost.

Researchers have also extensively studied hybrid methods that
use both particles and grids, due to their flexibility in handling
complex liquid behaviors. The early work done by Foster and
Metaxas [1995] solved the velocity field on a regular grid and
tracked liquid cells by marker particles. Enright and collabo-
rators [2002] developed a particle level set method to address
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Figure 4: System pipeline. Our system contains two major components. The dynamic simulation component simulates brush, paint, and their
interactions. Meanwhile, the liquid transfer component allows paint liquid to travel freely among different representations.

numerical dissipation in level set methods by marker particles
near liquid surfaces. Particle-in-cells [Harlow 1964] and fluid-
implicit-particles [Brackbill and Ruppel 1986] are two hybrid
methods that use both grid cells and particles to store different
liquid properties. Based on these two methods, researchers [Zhu
and Bridson 2005; Boyd and Bridson 2012; Hong et al. 2008;
Ando et al. 2012] have explored a number of extensions, such as
material point method [Sulsky et al. 1994; Stomakhin et al. 2013].
Losasso and colleagues [2008] and Lee and collaborators [2009]
formulated hybrid approaches that use both SPH and level set
methods to simulate different liquid regions. Recently, Chentanez
and colleagues [2014] proposed to combine SPH, volume-of-fluid,
and height field methods together for fast solve of large water
effects. While our system also uses a hybrid representation to model
different liquid regions, the challenge is how to customize it so that
it is efficient and accurate for painting simulation.

Hair-liquid coupling. Our work is also related to recent research
on hair-liquid coupling. Lin and colleagues [2011] proposed to
simulate the hydrophilic effect of hair by adhesion force. Later,
they [2014] developed a two-way coupling method to handle the
interaction between hair and SPH liquid. Rungjiratananon and
collaborators [2012] presented a hybrid approach to model hair as
dynamic anisotropic permeable material and simulated its wetting
process. Recently, Akinci and colleagues [2013] studied better sur-
face tension and solid adhesion models under the SPH framework.
During the painting process, a bristle does not deform as much as
a hair does, but it can move rapidly due to brush motion. So we
are interested in finding a unique solution to real-time simulation of
bristle-liquid coupling, which has not been studied before.

Simulation-based painting systems. The early painting sim-
ulation system developed by Baxter and colleagues [2001; 2004b]
modeled a brush by a subdivision surface with mass-spring skele-
tons. It simulates paint as a 2.5D height field and stores pigment
on the brush by a color map on brush surface. Chu and collabo-
rators [2002] improved this method by simulating skeleton motion
under an energy minimization framework. To produce fine color
and streak details in strokes, later they [2010] investigated the use
of the 2D imprint color map with a 3D brush. Baxter and collab-
orators [2004] modeled each brush bristle as a polygon strip and
stored colors on bristle vertices, but they did not model the physical
interaction between bristles and paint on canvas. They [2004a]
have also explored the use of the volume-of-fluid method as a
better liquid representation. Xu and colleagues [2002] proposed
to model a brush with many hair clusters, which can split during
painting. Although they can simulate ink flow among clusters,

they cannot handle two-way coupling between bristles and paint,
nor individual bristle behaviors. DiVerdi and collaborators [2010]
simulated 3D brush bristles in a non-inertial brush frame, but
handled paint and the actual painting process in 2D. Instead of
simulating brushes, Okaichi and colleagues [2008] also studied the
simulation of painting knifes and their interactions with height-
field-based paint.

3 System Overview

Our system contains two major components as Figure 4 shows:
dynamic simulation and liquid transfer. In each time step, the
dynamic simulation component simulates brush, paint, and their
interactions. Given the user input, the system first simulates the
motion of each brush bristle and updates additional bristle samples.
It then simulates each liquid particle around bristles twice, once in
the nearby bristle sample frame and once in the canvas frame. The
two results are blended together to update the position of the parti-
cle. Using this two-step approach, the system can robustly handle
the adhesion effect of particles to bristles, even when the time step is
large. Away from bristles, liquid is represented by a regular grid and
simulated in an active window only. To achieve incompressibility in
both particle-based liquid and grid-based liquid, the system merges
the two into joint density and velocity fields. It then makes the joint
velocity field divergence-free by pressure projection, and updates
both particles and the density field. After dynamic simulation ends,
the liquid transfer component handles the liquid exchange among
bristles, particles, and the density field. Depending on the distance
to bristles, liquid can be represented as a mass value stored within a
bristle sample, a liquid particle, or a density value within a grid cell.
Our system allows particles to be dynamically created or removed,
depending on brush movement.

The pigments within liquid determine the appearance of a painting.
Here we define the pigment color by a red-yellow-blue vector,
stored in every liquid representation. In addition, we use two scalar
variables to control liquid motion behavior. The dryness determines
when paint liquid becomes dry and behaves as solid. The oil density
controls liquid viscosity and liquid transparency in rendering. We
will discuss their use later in Sections 4 and 6.

4 Dynamic Simulation

In this section, we will discuss how the system simulates brush
bristles, particle-based liquid, and grid-based liquid. We note that
these three parts are not handled independently. Particle-based fluid



and grid-based fluid are coupled together through a joint pressure
projection step. The joint velocity field also helps us achieve two-
way coupling between bristles and paint liquid.

4.1 Brush Modeling and Simulation

A brush model is made of many bristles, each of which contains
a list of vertices as Figure 5 shows. User directly controls brush
motion, which can be arbitrarily large within one time step. Even
in such a case, brush bristles should follow the brush tightly. This
can be achieved by applying large spring forces, but explicit time
integration is numerically unstable and implicit time integration
is too expensive for real-time applications. Intuitively, simply
repositioning bristle vertices near the brush may work, with some
way to control that amount. Based on this idea, we first investigate
Newtonian dynamics in the non-inertial brush frame, and then
design a unique simulation treatment accordingly.

Let canvas do not move, so it defines an inertial frame where
Newtonian physics always holds. Let xi and vi be the position and
velocity of a bristle vertex i in the canvas frame. We first convert
them into the brush frame as:

xB
i = RB(xi + cB), vB

i = ẋi
B, (1)

in which RB and cB are the rotation matrix and the translation vector
describing the rigid transformation from the canvas frame to the
brush frame. Let vB and ωB be the linear and angular velocities
of the brush frame, observed in the canvas frame but defined in
the brush frame. Using the calculus of vector derivatives in moving
frames, we can rewrite Newton’s laws in the brush frame and derive
the total inertial acceleration applied on i in the brush frame as:

v̇B
i = RBai−βB

(
v̇B + ωB × (ωB × xB

i ) + ω̇B × xB
i + 2ωB × vB

i

)
, (2)

in which ai is the external acceleration applied on i in the canvas
frame, including the gravity force and the drag force due to the
grid-based liquid flow handled later in Subsection 4.2.

The second term in Equation 2 contains four inertial accelerations
written in terms of non-inertial frame coordinates. These are recti-
linear acceleration, centrifugal acceleration, Euler acceleration, and
Coriolis acceleration, respectively. Intuitively, these accelerations
try to drag the vertex away from the brush, when it suddenly
accelerates or decelerates. So we introduce a coefficient βB to
control their influence. When βB = 1, Equation 2 is equivalent
to Newtonian physics, and when βB = 0, Equation 2 forces the
vertex to stay with the brush in a position-based way. Using a
small βB, we can integrate Equation 2 explicitly to update xB

i and
vB

i . We typically set βB ∈ [0, 0.1] to make bristles follow brush
motion fast for better user control. If the brush is small and stiff,
we can even set βB = 0 to draw thin and clear lines. After explicit
time integration of the forces, we enforce inextensible and bending
constraints on vertex positions and velocities by the position-based
method [Müller et al. 2007]. Finally, we convert the vertex back
from the brush frame into the canvas frame.

So far, we assume that the bristles are infinitely thin and we can
simulate them independently. In reality, however, the bristles
cannot be clustered into an infinitely small volume due to their
thickness. To correctly produce the clustering effect, one method
is to report a collision when two bristle segments intersect and
remove the collision by repulsion impulses. Unfortunately, colli-
sion detection and handling is computationally expensive even on
GPU. So our solution is to estimate the bristle vertex density at
each vertex using a smoothed kernel function, and then enforce a
minimal density constraint on it at the end of the brush simulation
step. Implementation details about such position-based density
constraints can be found in [Macklin and Müller 2013].

Brush
Bristle vertices (also samples)
Bristle samples

Fluid particles under influence
Fluid particles

Figure 5: Brush and liquid models. Our system uses samples to
represent each bristle, and uses particles to represent the liquid
within D0 distance away from bristles. If the distance from a
particle to its closest sample is less than D1, it is under the influence
of that sample and it will be simulated in the local sample frame
once for the adhesion effect.

Bristle samples and local frames. Each bristle contains
enough vertices to ensure its smoothness during simulation. But
these vertices are usually not dense enough to model the interaction
between bristles and paint liquid. To solve this issue, we propose to
create more samples over each bristle, as shown in Figure 5.

Let each bristle be represented by a cubic Hermite spline curve,
whose points are specified by the vertices and whose tangents are
calculated by finite difference. We select samples from the curve
densely, so that the gap between two samples is smaller than the
size of a pixel. To determine the local frame of each sample j
spanned by three unit axial vectors t j,n j,b j, we use the minimal
twist method [Bishop 1975; Bergou et al. 2008]. Once we update
all of the sample positions and their local frames, we rasterize
them into a density field and a velocity field. They will be used
as boundary conditions in grid-based liquid simulation next.

4.2 Grid-based Liquid Simulation

Let us first consider grid-based simulation of paint liquid using
an Eulerian approach. We discretize the space above canvas into
a regular 3D grid at the pixel level and define scalar variables,
including liquid density, pigment color, oil density and dryness,
in each grid cell. The velocity field is defined at each cell face
in a staggered fashion. We model paint liquid by a 3D density
field, rather than other fields1 (such as the level sets), because it is
inexpensive to maintain and it can conveniently handle the liquid
transfer to and from particles, which will be discussed later in
Subsection 5.2.

We develop our Eulerian liquid simulator in a standard way and we
advect all of the fields using the semi-Lagrangian method [Stam
1999]. The discretized bristle density and velocity fields in Subsec-
tion 4.1 are treated as boundary conditions in pressure projection.
In each time step, we also increase the dryness of every grid cell
by a small amount. Once the dryness of a cell reaches a threshold,
we ignore its velocity and we treat it as a solid cell in pressure

1A more economic representation is to define a 3D density field on top
of a height field. However, our experiment shows that this representation
has difficulty in maintaining overhanging liquid features even under high
viscosity, due to limited accuracy in the canvas normal direction.



Algorithm 1 Fixed Point Pressure Projection(u, P)

for l = 1, ..., L do
P = αP;
D = ∇ · u;
P = One Jacobi Iteration(P,D);
P = One Jacobi Iteration(P,D);
u← u − ∇P;

return u;

projection as well.

One of the key challenges here is how can we quickly solve the
linear system involved in pressure projection, which is known to be
the bottleneck in many existing simulators. Since the liquid domain
changes over time, we have to use iterative solvers, instead of direct
solvers. Our limited computational power also prevents us from
using sophisticated iterative solvers, such as conjugate gradient. In
fact, we can afford only a few Jacobi iterations and the calculated
pressure result often has a large residual error, as Figure 6 shows.
To make the Jacobi solver converge faster, we found that a fixed-
point method shown in Algorithm 1 can be very effective. Let
Ax = (D − R)x = b be the linear system of pressure projection, in
which D is the diagonal component of A. The fixed-point method
is mathematically equivalent to:{

b(k+1) = b(k) − Ay(k),

y(k+1) = D−1
(
b(k+1) + RD−1

(
b(k+1) + αRy(k)

))
,

(3)

whose actual solution is given by: x(k+1) =
∑k+1

n=0 y(n). Let O =
D−1R. We can derive the recurrence form of x(k+1) as:

x(k+1) = (I −O2)x + O2x(k) + αO2
(
x(k) − x(k−1)

)
, (4)

whose error e(k+1) = x(k+1) − x is:

e(k+1) = O2e(k) + αO2
(
e(k) − e(k−1)

)
. (5)

Equation 5 is relevant to the Chebyshev semi-iterative
method [Golub and Van Loan 1996], which also uses x(k−1)

and has the following recurrence form:

e(k+1) = ωk+1Oe(k) + (1 − ωk+1)e(k−1), (6)

where ωk+1 is calculated using an estimation ρ̄ of the spectral radius
ρ(O). The Chebyshev method is similar to the weighted Jacobi
method, whose error can be formulated as:

e(k+1) = ωOe(k) + (1 − ω)e(k), (7)

in which ω is now a weight constant. Figure 6 compares the
convergence rates of the three methods. At first glance, it seems
that our method is not very attractive, as it converges slower than
the Chebyshev method when both use optimal parameter values2.
Interestingly, if we look closely at the first few iterations as shown
in Figure 6d, we can see that our method actually has the fastest
convergence rate when α = 1. This is because its matrix has
complex eigenvalues and its result oscillates, causing the error to
decrease much faster at the beginning. We note this is a typical
phenomenon, and it is relatively independent of the grid resolution
and the system stiffness. In our experiment, we use three fixed-
point iterations, or six Jacobi iterations. The parameter α is simply
set to 1, so no parameter tuning is needed.

2The optimal α of our method can be estimated using the spectral radius
of O2. Please see the supplemental document for explanation.
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(b) The Chebyshev method

0 20 40 60 80 100

100

10-2

10-4

10-6

102

10-8

Number of Jacobi Iterations

R
es

id
ua

l E
rr

or

ω = 1
ω = 0.67
ω = 1.2

0 2 4 6 8

100

10-.5

10-1

Number of Jacobi Iterations

R
es

id
ua

l E
rr

or

Ours
Chebyshev
Jacobi

(c) The weighted Jacobi method
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(d) The closeup

Figure 6: The convergence rates of different methods. Our method,
the Chebyshev method, and the weighted Jacobi method are all
equivalent to the Jacobi iterative method, when α = 0, ρ = 0, and
ω = 1, respectively. Although our method does not converge as fast
as the Chebyshev method does, it has the fastest convergence rate
within the first six Jacobi iterations when α = 1. Note that each
fixed-point iteration of our method uses two Jacobi iterations.

Even with our fast pressure projection solver, we still cannot afford
running grid-based simulation over the whole grid. Fortunately,
since liquid motion is often triggered by brush activities and liquid
velocity can be quickly eliminated by high viscosity, we can restrict
grid-based simulation to a small active window around the brush.
We typically set the window size to: 128 × 128 × 32. We update
the window location at the beginning of each time step. An even
better strategy is to use multiple windows and center them at high
flow regions. However, this method is more complex and we do not
consider it at this time.

4.3 Particle-based Liquid Simulation

At the pixel level, grid-based liquid is memory and computationally
inexpensive to handle. But at the sub-pixel level, which is needed to
model details generated by thin bristles, grid-base liquid becomes
too expensive. Grid-based liquids also suffer from numerical
dissipation, which can be noticed as overly blurry or smoothed
artifacts, as Figure 7a shows. Last but not least, the pressure
projection step in grid-based simulation can be inaccurate, when
user moves the brush rapidly within paint liquid. This numerical
inaccuracy can cause obvious volume change artifacts, as shown
in Figure 7c. To solve these issues, we propose to simulate liquid
around the brush by particles. Figure 7b and 7d demonstrate that
this approach can preserve subtle color details and liquid volume
well.

Position-based liquids. We started building our system by
using the position-based fluid method proposed by Macklin and
Müller [2013]. The basic idea of this method is to iteratively
enforce the density constraint at each particle. We liked this
method, since we can handle the interactions among liquid particles
and bristle vertices under the same position-based framework by
optimizing all of their constraints together. Unfortunately, we found



(a) Grid-based liquid (b) Hybrid liquid

(c) Grid-based liquid (d) Hybrid liquid

Figure 7: The results of different liquid representations. Using the
hybrid liquid representation, our system can produce more detailed
and volume-preserving results shown in (b) and (d).

several issues that prevent us from using it in practice. First, the
method tends to produce bumpy surfaces, if the system does not
use a sufficient number of iterations to reduce the density error.
Second, our system needs 200K to 1M particles to model sub-pixel
liquid details, which is way too many for the position-based method
to handle in real time. Finally, the method is sensitive to particle
distribution and it can cause sudden surface changes, when particles
are removed or added by liquid transfer processes.

FLIP/PIC liquids. So we choose to simulate liquid particles in
a fluid-implicit-particles/particle-in-cells (FLIP/PIC) fashion. In
each time step, we renew particle velocities by external forces and
update particle positions. To model the slippery condition and the
high viscosity effect, we apply a friction force at each particle k:

ffrictionk = −max
(
(1 − δdk)2, 0

)
vk, (8)

in which vk is the particle velocity, dk is the distance from the
particle to the solid surface, and δ is a constant controlling the force
range. To model the adhesion effect of the particle to bristles, we
can also define an adhesion force. However, this adhesion force
must be highly stiff to prevent the particle from leaving bristles,
which causes numerical instability when the force is integrated
explicitly. To solve this problem, we propose to simulate the
particle twice, once in the local bristle sample frame and once in
the canvas frame. Specifically, we assign particle k to its closest
bristle sample and convert its position and velocity into the non-
inertial local frame of that sample: pL

k and vL
k . We calculate the

total acceleration of the particle in the local frame by:

v̇L
k = RLak − βL

(
v̇L + ωL × (ωL × pL

k ) + ω̇L × pL
k + 2ωL × vL

k

)
, (9)

in which ak is the external acceleration including the gravity and
the friction, RL is the rotation matrix from the canvas frame to
the local frame, vL and ωL are the linear and angular velocities
of the local frame observed in the canvas frame but defined in the
local frame, and βL is a coefficient controlling the magnitude of
inertial acceleration effects. When βL < 1, Equation 9 achieves the

(a) A force-based method (b) A two-step method

Figure 8: A comparison example. Our two-step method can keep
liquid particles following bristles as shown in (b), while the force-
based method using explicit time integration fails as shown in (a).
Both methods use the same time step. We maximize the force
stiffness in the force-based method without numerical instability.

adhesion effect, by reducing the inertial accelerations that drag the
particle away from bristles. After we update the particle position
using the total acceleration in the local frame, we convert it back
into the canvas frame as p′k. Meanwhile, we still update the particle
position in the canvas frame using explicit time integration to get
p′′i , without considering adhesion. The position of particle i (in the
canvas frame) is finally updated by:

pnewk = p′′k + max
(
1 − dB,k/D1, 0

) (
p′k − p′′k

)
, (10)

where dB,k is the particle distance to bristles and D1 is a variable
specifying the range of the adhesion effect. After the particle
position is updated, we correct the particle velocity in the canvas
frame.

Intuitively, the particle position in the local frame is calculated in a
position-based way, so the particle can follow bristles closely and
stably if it is close to bristles. On the other hand, if the particle
is away from bristles, its motion is less affected by bristles and it
can escape from their influence eventually. Figure 8 compares our
two-step method with the force-based method using explicit time
integration. While the force-based method fails to keep particles
close to bristles, our two-step method can achieve the adhesion
effect without numerical instability.

After we update particle positions, we rasterize them into density
and velocity fields, and combine them with the existing fields repre-
senting the grid-based liquid. Rather than performing viscosity and
pressure projection steps on the original velocity field, we perform
them on the joint velocity field u. Given the updated divergence-
free velocity field ū, we correct the particle velocity vk by a mixed
FLIP/PIC model:

vnewk = γū(pk) + (1 − γ) (vk + ū(pk) − u(pk)) , (11)

in which the parameter γ is typically set to 0.8. Different from
conventional FLIP/PIC methods that allow only particles to carry
mass and velocities, our method keeps the updated velocity field to
the next time step. This velocity field not only provides the drag
force used for brush simulation in Equation 4.1, but also helps us
more accurately track the boundary between particle-based liquid
and grid-based liquid without additional velocity extrapolation.

5 Liquid Transfer

Here we will describe the liquid transfer processes among bristle
samples, liquid particles, and the density field. Since brush bristles
are not in direct contact with grid-based liquid, we consider only
two liquid transfer processes: bristle-particle liquid transfer and
grid-particle liquid transfer.
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Figure 9: Factors affecting the sample capacity. Using the sample
density and the sample distance to other surfaces, we define the
maximum liquid amount that can be stored within a bristle sample.

5.1 Bristle-Particle Liquid Transfer

A brush bristle can keep paint liquid due to its hydrophilicity, even
after being wiped on canvas many times in the real world. Given
the two-step method described in Subsection 4.3, our system can
simulate this effect using sufficiently small particles and time steps.
Unfortunately, we cannot afford doing so in real-time simulation,
and all of the particles will leave bristles inevitably as a result.

To solve this issue, we propose to let a small amount of paint liquid
be loaded at each bristle sample, representing the liquid that cannot
easily leave the bristle. Let j be a bristle sample located at x j. We
define its current liquid load as m j, its total saturation capacity as
M j, and its pigment as c j, a 3D vector describing its color. When m j
changes over time, the capacity M j also changes over time due to
two factors. First, the capacity depends on the gap among bristles:
a sample should store more liquid, if it is away from other samples;
and it should store less liquid, if it becomes closer to other samples
under compression, as Figure 9a shows. We calculate the potential
capacity M′

j of sample j using the bristle sample density field ψ,
given in Subsection 4.1:

M′
j = max

(
(1 − µ · ψ(x j))Mmax,Mmin

)
, (12)

in which µ is a control parameter, and Mmax and Mmin are the
maximum and minimum capacity values. Second, the capacity
should be reduced, when the sample becomes closer to the surface
of the grid-based liquid, or a solid boundary surface, e.g., when we
wipe the bristle over canvas. Let r j be the distance from the sample
to such a surface, clamped between 0 and R j, as Figure 9b shows,

where R j =
3

√
3M′j
4πρ0

and ρ0 = 1.0 × 103kg/m3 is the reference paint

density. Assuming that paint liquid is distributed evenly around the
sample in a spherical shape, we calculate the actual sample capacity
M j by:

M j = M′
j − ρ0π(R j − r j)2

(
R j − (R j − r j)/3

)
. (13)

Intuitively, M j is the total liquid volume that can be stored within
the spherical cap, after the sphere is chopped off by a plane. Note
that if the sample is away from any surface, r j = R j and M j = M′

j.

Absorption. Once we obtain the capacity M j of a bristle sample
j, it is straightforward to model the liquid transfer to and from
the sample, based on its current load m j. To test whether sample
j should absorb more particles, we check whether m j < M j and
any liquid particle k exists within the radius R j from the sample, as
Figure 10 shows. If so, we add the particle mass mk to m j and mix
the particle pigment vector ck with the sample pigment vector c j:

mnewj = mk + m j, cnewj = Color Mix(ck, c j,mk,m j), (14)

Figure 10: Particle absorption and emission. The capacity (in
dotted lines) of one particle is above its liquid load (in solid lines),
so it absorbs particles (in red). In contrast, the capacity of the other
particle is below its liquid load, so it emits particles.

in which Color Mix is the mixing function defined in Section 6.
After we add the particle content into the bristle sample, we remove
the particle. Although the sample cannot absorb more particles
once m j ≥ M j, we still allow the color mixing process to happen
between particle k and sample j. This is to model the color bleeding
effect, in which a saturated bristle can still pick up new colors
through its contact with paint liquid.

Emission. If m j > (1+ε)M j, we ask the sample to release its load
by emitting new particles in its neighborhood. We calculate each
new particle position using a pre-defined pattern, which uniformly
distributes particles in the bottom hemisphere of the sample, as
Figure 10 shows. The new particles share the same attributes as the
sample, including the velocity. Here ε is a small positive constant to
prevent particles from being repetitively emitted and absorbed. So
the load of the sample can be stabilized at m j ∈ [M j, (1 + ε)M j]. To
further smoothen the liquid transfer process, we also set a limit on
the maximum number of particles that can be absorbed or emitted
by a sample per time step.

5.2 Grid-Particle Liquid Transfer

Our system allows the conversion between particle-based represen-
tation and grid-based representation. For simplicity, we assume
that liquid within distance D0 from bristles must be represented by
particles, as Figure 5 shows. So if a grid cell is found to be within
this distance range and its density is positive, we use stratified
sampling to select 27 particle candidates within the grid cell. We
then check the interpolated liquid density at each candidate and
convert a candidate into a liquid particle, if its density is positive.
Once we generate the new particles, we reduce the density of a grid
cell c by:

ρnewc = max

ρc − mk

K∑
k=1

W(pk − xc, h), 0

 , (15)

in which {p1,p2, ...,pK} are the new particles near the grid cell
location xc, mk is the particle mass, and W is a smoothing kernel
function with length h. Note that c can be any cell near new
particles and it does not have to emit any particle. The reason we
do not limit the density change to particle-emitting cells is to ensure
sufficient smoothness in the density field.

Similarly, we transfer the liquid represented by a particle back into
the density field, if the particle moves slowly and its distance to the
bristles is above D0. To do that, we increase the cell density by:

ρnewc = ρc + mk

K∑
k=1

W(pk − xc, h), (16)

in which {p1,p2, ...,pK} are now the removed particles. Other liquid
particle variables, such as oil density and dryness, can be simply



Symbol Usage
i A bristle vertex
j A bristle sample

r j Sample distance to solid/grid-fluid surface
k A fluid particle
dk Particle distance to solid surface

dB,k Particle distance to bristles
α = 1 Pressure projection solver (in Eq. 3)

βB ∈ [0, 0.1] Simulating bristles in the brush frame (in Eq. 2)
βL ∈ [0, 0.2] Simulating particles in local frames (in Eq. 9)
δ =1/0.2cm Particle friction range (in Eq. 8)
γ = 0.8 Blending particle positions (in Eq. 11)
µ = 0.5 Estimating bristle sample capacity (in Eq. 12)
ε = 0.1 Sample emission epsilon

D0 = 1cm Distance range for grid-particle conversion
D1 = 0.3cm Distance range for bristle-particle adhesion

Table 1: Variables and parameters. This table lists important
variables and parameters, and their value ranges used in this paper.

Algorithm 2 Color Mix(ci, c j, wi, w j)

bi ← ‖RYBtoRGB(ci)‖M;
b j ←

∥∥∥RYBtoRGB(c j)
∥∥∥

M;
c′ ← (wici + w jc j)/(wi + w j);
b′ ← ‖RYBtoRGB(c′)‖M;
b′′ ← (wibi + w jb j)/(wi + w j);
return b′′c′/b′;

merged into the grid cells using linear interpolation. The exception
is the pigment color, whose interpolated intensity is adjusted to
maintain a proper brightness level. Please see Section 6 for details.

6 Implementation

We implemented the whole system on GPU by CUDA. In our
system, particle rasterization requires using many atomic opera-
tions, which are found to be computationally expensive. Another
computational bottleneck is the neighborhood search, which is done
using the sorted hash list [Green 2010]. Table 1 summarizes some
of the variables, the parameters, and their values ranges. Below are
additional implementation details.

Color mixing model. Our system defines a pigment vector by
three channels: red, yellow, and blue. This RYB model allows
additive color mixing to be performed more naturally and intu-
itively, as Gossett and Chen [2004] showed. To mix two colors,
we use a brightness-preserving color mixing function shown in
Algorithm 2. Here ‖x‖M measures the brightness of x in the RGB
space: ‖x‖M = (xTMx)

1
2 , in which M = diag(0.241, 0.691, 0.068)

is a diagonal matrix. Intuitively, Algorithm 2 adjusts the intensity
of the interpolated color vector, so that its brightness is equivalent
to the interpolated brightness of the two input color vectors. The
mixing of multiple colors can be handled in a similar way, by doing
linear interpolation first and then adjusting the brightness intensity.
We found that our color mixing model3 can provide more vivid
results. For example, it blends blue pigment and yellow pigment
into green pigment, as Figure 11c shows.

Liquid rendering. We use the ray casting technique to render
the fluid volume on the OpenGL platform. Specifically, in each
fragment shader, we shoot a ray from the camera to every pixel
sample in the image plane. Along the ray, we sample the density

3We note that this model is not physically correct, as the brightness does
change after fluid mixing in the real world.

(a) RGB Interpolation (b) RYB Interpolation (c) Our model

Figure 11: The results of color mixing models. Compared with lin-
ear interpolation in the RGB space in (a) and linear interpolation in
the RYB space in (b), our brightness-preserving color mixing model
can provide a more vivid and plausible result shown in (c).
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Figure 12: The Breakdown of the computational cost. Liquid
simulation and grid-particle liquid transfer are the most expensive
steps. This example uses 210K particles and runs at 46FPS.

value every one quarter of the density grid size. We detect a surface
intersection once the density is found to be greater than a certain
threshold. At the intersection point, we calculate the surface normal
from the density gradient, and sample the pigment color and the oil
density. To produce transparency effects, we use the oil density
to calculate a penetration distance and we allow more pigment
samples to be collected along the ray into the surface within that
distance. We blend all of the pigment samples together to determine
the final color of the ray. We use ambient occlusion to produce
shadow effects, by shooting 64 rays around the intersection point
and collecting the maximum density values these rays can reach
within a short distance. To reduce the rendering cost, we redraw the
active simulation window only when there are activities in it. To
render liquid particles, we use the screen-space method proposed
in [van der Laan et al. 2009]. The discrepancy between the volume
rendering mode and the particle rendering mode can cause temporal
discontinuity around the brush, i.e., liquid particles disappearing
when it is transferred into grid cells. Fortunately, this problem is
noticeable only in closeup views.

7 Results and Discussions

We tested the performance of our system on an Intel i7-5930K
3.5GHz desktop with an NVIDIA GeForce GTX TITAN X GPU.
Figure 12 shows a typical breakdown of our computational cost.
Our system performance varies from 30 to 110 FPS, depending on
the size of the brush and the total number of active particles. We
typically set the grid resolution to 4096 × 4096 × 64. Currently,
the brushes in our system contain 40 to 600 bristles, and each
bristle contains 10 vertices and 128 samples. For a large brush, the
system can generate as many as 2M particles in simulation. User
can tune a number of parameters to trade between the performance
and the result quality. For example, D0 can be reduced to use
fewer particles, so that the system can run faster with lower-quality



Figure 13: Our early result simulated by GLSL shaders. While the
result looks plausible, the system suffers from two main limitations.

results. Similar to real painting, our system allows users to control
the painting style by adjusting the oil density level: higher oil
density helps create paintings in a thin and flat style as shown
in Figure 15, while lower oil density helps create thick paintings
as shown in Figure 1. (Please see the supplemental video for
simulation examples.)

Comparison to a shader-based system. Before developing
our current system, we built and tested several other simulation-
based painting systems, including the one using GPU shaders. We
liked the shader-based system, since it is cross-platform. Specif-
ically, we implemented a level-set-based fluid simulator on a far-
field grid proposed in [Zhu et al. 2013] using GLSL shaders, and
we simulated brush dynamics on CPU. We carefully minimized the
data transfer between CPU and GPU, and balanced their workloads
to avoid one from being held by the other. While this system
generates acceptable brush stroke effects as shown in Figure 13, it
suffers from two main limitations that prevent us from exploring it
even further. First, it is computationally expensive to simulate and
render thick paint by GLSL shaders, since paint volume stored in a
3D texture must be loaded into a 2D framebuffer one layer at a time
for shaders to work on. Second, it is difficult to address volume loss
and surface quality issues, without increasing the computational
cost. Our system avoids these problems, by using the flexible
CUDA platform and a hybrid simulation strategy that combines
particles with the density grid.

Feedback from artists. We invited artists to evaluate the usabil-
ity of our system. The artists were impressed by our system and
they informed us that this was the first time for them to feel like
doing real painting. Figure 14 compares the result of our system
with the results of previous virtual painting systems. Below is
a summary of their comments regarding our system and previous
systems.

• Our system generates many realistic and unexpected varia-
tions. In contrast, other systems cannot generate the same
amount of details.

• Our system produces different painting patterns. Some sys-
tems use stamp maps and their results have noticeable re-
peated patterns. Some systems also create the same pattern
regardless of the stroke speed.

• Using our system, artists can control the brush edge by
pressing strongly or softly and adjusting the stroke speed.
This is not doable by many previous systems.

• Our system allows color mixing through pick-up in the brush.
In the past, the simulation of color mixing was either unnatu-
ral, or limited.

The performance of the current system is one of its main drawbacks,
as artists pointed out. Specifically, it places a limit on the stroke
speed, so artists need more time to finish paintings in our system
than in the real world. Interestingly, this limit also affects their
workflow. In the real world, artists usually draw rough sketches
first, and then gradually add details. Since they cannot do sketching
fast in our system, they prefer to skip it as our video shows.
Allowing fast strokes will greatly improve the usability of our
system.

Other limitations. Real paint is a shear thinning fluid, whose
viscosity decreases under shear strain. For simplicity, our physics
model does not consider this effect. Currently, our system relies on
particles to deposit paint liquid and mix color through the pigment
blending process. This requires particles to be densely sampled.
if we reduce the particle density for fast performance, dirty color
mixing or noisy surface artifacts may appear. Although the use of
FLIP/PIC helps preserve volume, we still cannot strictly achieve
incompressibility in this system. Particles may also become non-
uniformly distributed over time. As a result, when user moves
the brush in a jittering way, the paint surface can become bumpy
due to clustered particles. We cannot afford using smaller time
steps or a densely sampled stroke path to address this issue. The
computational cost of our current system requires it to use high-
performance graphics hardware. We have tested our system on
some low-end hardware, but the result is not satisfactory yet.
Finally, this work is focused on shape fidelity, not color fidelity.
Our current color mixing model is still too simple and we would
like to improve its accuracy in the future.

8 Conclusions and Future Work

In this paper, we have presented a real-time painting simulation
system that models the interactions among brush, paint, and canvas
at the bristle level. This system is made possible, thanks to a variety
of techniques we developed on today’s high-performance GPU. Our
experiment shows that bristle-level interactions are important to the
realism of computer-based painting.

In the future, we would like to improve the accuracy of our brush
simulator, e.g., bristle softness after being wetted and surface
tension. We also would like to incorporate water color and wet
canvas effects into the system, so that paint can travel within canvas
through percolation. An interesting question is how can we achieve
high-quality simulation results on low-end devices. To answer
this question, we are interesting in exploring alternative models
and tools that can produce quality results fast. Finally, we will
develop more accurate color mixing models and detail enhancement
approaches, to further improve our result quality.
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