

WetBrush: GPU-based 3D Painting Simulation at the Bristle Level

Zhili Chen^{1,2} Byungmoon Kim², Daichi Ito², Huamin Wang¹

¹The Ohio State University ²Adobe Research

Oil Painting

- Complex physical interactions

- Bristle-Bristle
- Bristle-Fluid
- Fluid-Fluid
- Simulate them!

Real-world footage

SIGG

ASIA

Previous works

- Paint Fluid Model

- Height field
- 3D volumetric density grid

Baxter, et al. 2004

Chu, et al. 2010

SA2015.SIGGRAPH.ORG

Sponsored by

SIG

Previous works

- Brush Model
 - 2D stamping
 - 2D Surface wrapped around skeleton
 - 3D Brush projected onto 2D stamp
 - Individual Bristles

Previous works

Brush-Paint Fluid Interaction

- Brush-Fluid one way interaction
 - Deform when collide with canvas
 - Imprint generated using as boundary condition
- Simple color transfer/pickup function with texture map
 - In 2D imprint space
 - Wrapped surface space

Sponsored

SA2015.SIGGRAPH.ORG

"Not feel like real while painting"

- Artists who are familiar with traditional media want

- Correct brush deformation under force
- Brush that carries paint liquid for intuitive paint deposition
- Natural color mixing
- Fine details, not overly-smooth color
- Stroke variations and happy accident

- Oil Painting observed from molecule level
 - Brush carry paint
 - Adhesion between bristle molecule and fluid molecule
 - Cohesion among fluid molecule
 - Color mixing
 - Fluid molecules carrying different pigments gather and show mixed color

System Overview

SA2015.SIGGRAPH.ORG

Sponsored by

SIGGRAPH ASIA 2015

KOBE

Brush

SA2015.SIGGRAPH.ORG

Sponsored by

tre

SIGGRAPH ASIA 2015 KDBE

1

Brush Model

Model individual bristles

- Bristle Vertices
 - For brush dynamics
 - ~10 per bristle
- Bristle Samples
 - For paint interaction
 - B-spline curve
 - Denser sample near tip
 - ~50 per bristle
- 50-200 bristles

○ Bristle vertices (also samples)● Bristle samples

Sponsored by

Brush Dynamics

- Position-based Dynamics

- Collide with canvas/dry paint surface

SA2015.SIGGRAPH.ORG

SIG

Brush Dynamics

- Bristle-Bristle Contact

- Essential for correct brush shape under deformation
- Precise line-line collision processing?
 - Too expensive for real-time
- Particle based collision
 - SPH style repulsion
 - Avoid over-compression
 - Laplacian velocity filtering for inter-bristle friction

Brush

- Correct brush shape even under extreme deformation
- Stroke variations achieved from contacts between individual bristles

Sponsored |

• Allow creative use of brush just like one could with real brush

Sponsored by

SIGGRAPH

KDB

Fluid Simulation

Sponsored by

SIGGRAPH ASIA 2015 KDBE

Hybrid Fluid Representation

- Adaptive Hybrid Fluid Representation based on
 - Distance to brush
 - Velocity

SIG

Hybrid Fluid Representation

- Adaptive Hybrid Fluid Representation based on
 - Distance to brush
 - Velocity

Hybrid Fluid Representation

- Adaptive Hybrid Fluid Representation based on
 - Distance to brush
 - Velocity

Hybrid Fluid

Grid & Particles Visualized

Only Particles Visualized

Grid-based liquid and particles visualized

Only particles visualized

SA2015.SIGGRAPH.ORG

Sponsored by

SIGGRAPH

KDB

Grid Fluid

- Grid (Density, velocity, pigment, dryness, oil ratio)
 - Moving sim window (256X256X32) within full canvas grid (4096X4096X32)
 - Semi-Lagrangian Advection
 - Fast Fixed-Point Jacobi Method for solving pressure projection
 - Only 2-6 Jacobi iterations needed for acceptable error level
 - Suitable for real-time applications
 - Grid used only for slow moving region

Algorithm 1 Fixed_Point_Pressure_Projection(\mathbf{u} , P)for l = 1, ..., L do $P = \alpha P$; $D = \nabla \cdot \mathbf{u}$;P = 0ne_Jacobi_Iteration(P, D);P = 0ne_Jacobi_Iteration(P, D); $\mathbf{u} \leftarrow \mathbf{u} - \nabla P$;return \mathbf{u} ;

See paper for details

SA2015.SIGGRAPH.ORG

Particle Fluid

- Particles (velocity, pigment, oil ratio)
 - Interact with bristle sample points
 - Borrow Grid fluid velocity field for incompressiblity in FLIP/PIC way
 - Allow small amount of volume loss
- vs. SPH / Position-Based Fluid
 - Less noisy (good for viscous fluid appearance)
 - Faster (+ pressure projection already needed in grid)

Particle-Bristle Interaction

Sponsored by

SIGGRAPH ASIA 2015

KOBE

Particle-Bristle Interaction

- Brush pushes fluid
 - Bristle sample points as boundary condition
 - Particles get SPH repulse from bristles
- Brush carries fluid
 - Directly compute adhesion force?
 - Adhesion is strong
 - Unstable stiff system with large timestep
 - Small timestep/substepping => non-real-time

Bristle-Particle Adhesion

- Explicit adhesion force
 - $f_a = -kf(d_b)$
 - Particles fail to follow fast moving brush

SIG

Brush and fluid particles carried

- Has little relative movement
- Adhesive force counteract inertial acceleration
- Better modelled in brush non-inertial frame

Sponsored by

SIGGRAPH

SA2015.SIGGRAPH.ORG

SIGGRAPH

PICA

SA2015.SIGGRAPH.ORG

Sponsored by

SIGGRAPH

SIGG

AS

Sponsored by

β : A function of distance to brush

SA2015.SIGGRAPH.ORG

- Keep local non-inertial frame for every bristle sample point
- Particles assign to frame dynamically

- Brush carries paint by stable adhesion
- Natural mass preserving deposition of paint on canvas

Dry Brush Load

- Very dry brush still can produce strokes
 - Particles carried with adhesion will run out
 - Keep minimum paint load on bristle samples
 - Emit paint fluid particles to produce stroke
 - Absorb paint fluid particles to modify color

Fluid Representation

Sponsored by

SIGGRAPH

ASIA 2015

Fluid Representation

Why hybrid like this?

- Volumetric grid vs. Height field
 - Want to model overhanging paint
 - Full interaction with 3D brush

Overhang (Photographed)

Fluid Representation

Why hybrid like this?

- Volumetric grid vs. Height field
 - Want to model overhanging paint
 - Full interaction with 3D brush
- Particle-Grid Hybrid vs. Grid only
 - Brush carrying paint
 - Particles conserves mass so paint closer to brush does not disappear when moving fast
 - Particles tracks thin features better

Grid Only

Hybrid vs. Grid-only

- Hybrid method reveals more details in
 - Surface shape
 - Color mixing

(a) Grid-based liquid

(b) Hybrid liquid

SIGG

Hybrid vs. Grid-only

- Hybrid method reveals more details in
 - Surface shape
 - Subpixel level solid-fluid interaction with particles around brush
 - Avoid over-smoothing from grid sampling in semi-Lagrangian advection
 - Color mixing

(a) Grid-based liquid

(b) Hybrid liquid

SA2015.SIGGRAPH.ORG

Hybrid vs. Grid-only

- Hybrid method reveals more details in
 - Surface shape
 - Subpixel level solid-fluid interaction with particles around brush
 - Avoid over-smoothing from grid sampling in semi-Lagrangian advection
 - Color mixing
 - Particles carryings different pigment are not merged immediately
 - Avoid over-smoothing from sampling brush transfer texture

(a) Grid-based liquid

Results

SA2015.SIGGRAPH.ORG

SIGGRAPH ASIA 2015 KDBE

(a) ArtRage 4

(b) Fresh Paint

(c) Our system

Sponsored

- Compared with popular painting software
 - Better 3D shape
 - Finer surface details
 - More pigment variations along strokes

Thick "Impasto" Style A lot of overhang

SA2015.SIGGRAPH.ORG

Sponsored by

SIGGRAPH ASIA 2015 KDBE

Thinner painting style

SA2015.SIGGRAPH.ORG

- Implemented in CUDA
- GTX Titan X
- Average: 46 fps, 210K Particles (~3M at maximum)

Performance

- Implemented in CUDA
- GTX Titan X
- Average: 46 fps, 210K Particles

SA2015.SIGGRAPH.ORG

SIGGRAPH

ASIA 2019

Limitations

- Shear thinning fluid behavior not modelled
- Particles have to be densely sampled
 - for less noisy color mixing
 - 27 particles per cell
- No strict incompressiblity for particle fluid
 - Using velocity field with FLIP/PIC
 - Particles not evenly distributed overtime, resulting in noisy surface
- Some behaviors are more difficult for user control
 - Deposit rate, etc. more difficult to control than with procedural system
- Requirement of high-end graphics hardware

- Optimization of implementation
- Unified simulation of watercolor, oil painting, etc
- Simplification and optimization for low-end devices
- Less exhaustive method for similiar quality

